Дешевая-обувь.рф

Большая Энциклопедия Нефти и Газа. В чем отличие белков запасных от белков конституционных


ЛЕКЦИЯ 5

ЛЕКЦИЯ 5.

  1. Производные протопласта.

  2. Запасные питательные вещества.

  3. Продукты распада. Кристаллы.

  4. Физиологически активные вещества.

  5. Химический состав клеточного сока, его пигменты.

  6. Клеточная стенка и ее видоизменения.

  1. Характерной особенностью жи­вой материи является способность к постоянному обмену веществ, который складывается из реакций синтеза (ассимиляции) и реакций распада (диссимиляции). Растительные клетки отличаются ин­тенсивной синтетической деятельностью, причем синтез может быть первичным и вторичным. При первичном синтезе происходит образование органических веществ из минеральных. Он идет при участии энергии солнца и называется, как известно, фотосинтезом. При вторичном синтезе осуществляется преобразование органичес­ких соединений — из сахара образуется крахмал, из аминокислот — белки и т. п. Вторичный синтез протекает без доступа света, за счет внутриклеточной энергии, которая выделяется при окисли­тельных процессах (дыхании) в клетке. Наряду с реакциями син­теза в клетках совершается процесс расщепления веществ на бо­лее простые соединения, многие из которых не участвуют в даль­нейшем метаболизме. В результате в клетке появляются различные продукты распада (катаболиты*). Все вещества, вырабатываемые протопластом в результате его жизнедеятельности, составляют группу внутриклеточных включений.

Вещества, нерастворимые в воде, образуют в клетках оформ­ленные включения в виде капель, зерен, кристаллов. Растворимые продукты обмена входят в состав клеточного сока, который накапливается в вакуолях и относится к ж и д к и м(неоформленным) включениям клетки. Вклю­чения не являются постоянными компонентами, они могут появ­ляться и исчезать в зависимости от физиологического состояния клетки.

В соответствии с ролью и значением в жизнедеятельности клетки все внутриклеточные включения можно подразделить на 3 группы: запасные питательные вещества, продукты распада (катаболиты)' и физиологически активные вещества клетки.

  1. Накопле­ние большого количества питательных веществ является особенностью растительных клеток. Эти вещества частично используются клеткой как энергетический материал, окисляясь в процессе дыхания, в результате чего освобождается энергия, необходимая для всех протекающих в клетке жизненных процессов. Кроме того, из за­пасных питательных веществ образуются конституционные вещества, идущие на построение тела растений. Запасные питательные веще­ства встречаются в растительных клетках в виде углеводов, белков и жиров. .

Углеводы в растительных клетках присутствуют в виде полисахаридов, дисахаридов и моносахаридов. Полисахари д ы представлены в основном крахмалом (РАССМАТРИВАЕМ НА ПРАКТИКЕ!!!) однако встречаются также гликоген, инулин и гемицеллюлоза (полуклетчатка). Крахмал яв­ляется одним из наиболее распространенных углеводов, накапли­вающихся в клетках растений в качестве запасного питательного вещества. В его образовании обязательно участвуют пластиды. По происхождению в растениях различают крахмал ассимиляционный (первичный), запасной (вторичный) и транзиторный (переда­точный).

Ассимиляционный крахмал синтезируется в зе­леных частях растений и является одним из первоначальных про­дуктов фотосинтеза. Образование ассимиляционного крахмала воз­можно только в присутствии света и хлоропластов, в которых он откладывается в виде мельчайших зерен шаровидной или палоч­ковидной формы. Однако накопление крахмала в зеленых органах растений в большом количестве, как правило, не происходит. Образовав­шийся в них ассимиляционный крах­мал под действием фермента амилазы переводится в растворимую форму, т. е. гидролизуется до сахара, кото­рый и транспортируется в запасаю­щие органы растения, специально приспособленные для накопления пи­тательных веществ. В этих органах из притекающих к ним сахаров в при­сутствии фермента а м и л о с и н т е а з ы снова образуется крахмал— вторичный, или запасной. Запасной крахмал накапливается в клубнях, корневищах, корнях, семе­нах и других органах растений. Осо­бенно много крахмала содержится в клубнях картофеля (12...20%), семе­нах риса (60...80%), кукурузы (65... 75%), пшеницы (60...70%). Образование вторичного крахмала осуществляется при участии бесцветных пластид лейкопластов и может проходить без доступа света. Запасной крахмал находится в клетках растений в виде зерен различной величины — от 0,002 до 0,15 мм в диаметре. По форме они бывают шаровидные, чечевицеобразные, эллиптические, палочковидные и т. п.

Образование крахмального зерна начинается с возникновения в лейкопласте образовательного центра, вокруг которого стромой лейкопласта слоями откладывается вещество крахмала. Слои содер­жат различное количество воды и имеют различный коэффициент преломления света, благодаря чему они хорошо видны в микроскоп. Если отдельные слои откладываются вокруг образовательного цент­ра равномерно, формируются крахмальные зерна с концентрической слоистостью (злаки, бобовые). Если слой крахмала откладываются вокруг образовательного центра неравномерно, возникают крахмаль­ные зерна с эксцентрической слоистостью (картофель). Различают крахмальные зерна простые, сложные и полусложные. Простые имеют один образовательный центр. Сложные состоят из множества очень мелких простых крахмальных зерен, имеющих каждое свой образовательный центр и слоистость. В состав сложного зерна может входить несколько тысяч простых зерен (шпинат). В полусложных крахмальных зернах — 2 образовательных центра, окруженных общими слоями. Все крахмальные зерна представляют собой сферокристаллы, состоящие из тончайших радиально рас­положенных игл.

Форма и величина крахмальных зерен специфичны для отдель­ных семейств, родов и даже видов растений. Так, у картофеля они отличаются неправильной .формой, эксцентрической слоистостью и Достигают размера .70... 100 мкм. Крахмальные зерна бобовых значительно мельче, овальные, с концентрической слоистостью, и в центре у них обычно образуется продольная трещина. У риса, овса, гречихи крахмальные зерна сложные, легко распа­дающиеся на множество прос­тых зернышек неправильной формы.

Транзиторный крахмал нередко обра­зуется на путях следования сахаров от фотосинтезирующих органов к запасающим. Крахмал окрашивается йодом в синий цвет., медным купоросом и едким калием —в фиолетовый цвет. Он нера­створим в холодной воде, а в горячей набухает, образуя клейстер. Крахмал имеет как питательное вещество, необходимое растениям, животным и человеку, но и как сырье для промышленного производства глюкозы и спирта.

У незеленых растений — бактерий, грибов, а также некото­ рых водорослей — вместо крахмала накапливается запасной поли­ сахарид гликоген, более характерный для клеток животных организмов. В отличие от крахмала гликоген является воднорастворимым веществом. . х

Другим углеводом, заменяющим у некоторых растений крах­мал, является и н у л и н. Он образуется в клубнях земляной груши, корнях цикория, одуванчика и вообще характерен для представи­телей семейства сложноцветные (астровые). Подобно гликогену, инулин растворяется в воде, но под действием спирта выпадает из раствора в виде сферокристаллов. По химическому составу гликоген и инулин близки к крахмалу и имеют одинаковую с ним эмпирическую формулу.

Г е м и ц е л л ю л о з a (CsH804) n встречается в семенах ко­фейного дерева, финиковой пальмы, многих видов люпина, предста­вителей семейства лилейные и др., накапливаясь в клеточных оболочках. Под действием ферментов гемицеллюлоза, подобно крах­малу и целлюлозе, может превращаться в сахар.

Моносахариды и дисахариды встречаются в клетках растений в виде различных сахаров в растворенном состоянии.

Моносахариды (СвН12Ое) представлены виноградным са­харом — глюкозой и плодовым сахаром — фруктозой. Эти сахара накапливаются преимущественно в плодах (яблоня, груша, вино­град), а также в стеблях (кукуруза, сорго), листьях (лук) и других органах растений..

Дисахариды (С12Н22Ои) встречаются обычно в виде трост­никового или свекловичного сахара (сахарозы) и накапливаются в корнеплодах сахарной свеклы, стеблях сахарного тростника, пло­дах арбуза и других растений.

Белки, накапливающиеся в клетках в качестве запасного пи­тательного вещества, необходимо отличать от конституционных жи­вых белков, составляющих основу протопласта. Запасные белки — протеины — являются про­стыми белками. В отличие от сложных (кон­ституционных) белков они состоят, только из аминокислот. Для запасных белков характерна инертность, в силу которой они с большим тру­дом вступают в различные реакции. Запасные белки откладываются в форме алейроновых (протеиновых) зерен (в семенах злаков, бобо­вых) или в виде кристаллоидов (в клубнях картофеля), которые отличаются от настоящих кристаллов способностью к набуханию и окрашиванию. Алейроновые зерна образуются из вакуолей в результате их обезвоживания, что наблюдается при созревании семян. В прора­стающих семенах происходит обратный процесс — набухание, и алейроновые зерна снова превращаются в вакуоли. Размеры и строение алейроновых зерен очень изменчивы, но характерны для определенных групп растений и могут служить систематическим признаком. Алейроновые зерна бывают простые и сложные. Про­стые содержат аморфный белок, в сложных имеются еще кристал­лоид белка и особое округлое тельце глобоид, в состав которого входят кальций, магний и фосфор.

Содержание белка в сельскохозяйственных растениях также весьма различно. Так, в семенах люпина белки составляют 35% от массы сухого вещества, фасоли — 25%, гороха 29%, пшеницы — 12%, кукурузы—10%, картофеля — 8...10%.

От йода, белковые зерна окрашиваются в темно-желтый цвет. В горячей воде, кислотах и щелочах запасные белки растворяются почти полностью.

Жиры (жирные масла) представляют собой сложные эфиры — соединение жирных кислот с глицерином. Они состоят из тех же химических элементов, что и углеводы, но отличаются от них меньшим содержанием кислорода (С/гН2д02). Запасные жиры широко распространены в растительных клетках и обычно сосредоточены в цитоплазме, пластидах и митохондриях. По-видимому, жиры воз­никают непосредственно в цитоплазме, а также образуются в осо­бом типе лейкопластов — олеопластах. Наиболее богаты ими семена и плоды растений. Особенно много жиров содержится в семенах масличных культур: в среднем у подсолнечника — 46...51% от массы сухого вещества, у льна — 37%, у хлопчатника — 23%, у конопли — 34%. Жиры не растворяются вводе, но хорошо раство­ряются в бензине, серном эфире, хлороформе и т. д. По сравнению с другими питательными веществами жиры являются наиболее калорийными: в среднем 1 г жира дает 38,9 кДж (9,3 ккал), белка — 23,8 кДж (5,7 ккал), крахмала — 17,6 кДж (4,1 ккал). У подавля­ющего большинства растений жирные масла жидкие и встречаются в клетках в виде капель различного размера. Твердые жиры харак­терны для семян шоколадного дерева и кокосовой пальмы. Жиры имеют большое значение не только как высококалорийные пита­ тельные вещества, но также применяются человеком в лакокрасоч­ной, мыловаренной промышленности и в качестве смазочных мате­ риалов.

  1. Продукты распада (к а т а б о л и т ы). Наряду с запасными питательными веществами в клетках растений образу­ются вещества, которые обычно не участвуют в дальнейших хими­ческих процессах и называются катаболитами. Они могут накапливаться в специальных вместилищах или выделяются в окру­жающую среду. К ним относятся эфирные масла, алкалоиды, гликозиды, дубильные вещества, соли щавелевой кислоты, смолы, каучук и др.

Эфирные масла встречаются значительно реже, чем жирные, и характерны только для растений семейств зонтичные (сельдерейные), рутовые, губоцветные (яснотковые) и некоторых других. Обычно эфирные масла обладают летучестью и сильным специфическим запахом. Они встречаются в виде небольших капелек и скапливаются в различных частях растений — корнях, корневищах, листьях, стеблях, плодах и других органах. Эфирные масла защищают растения от поедания животными, многие из них обла­дают бактерицидными свойствами. Особенно богаты эфирными маслами такие растения, как мята, эвкалипт, роза, тмин, апельсин и некоторые другие. Многие растения (кориандр, мята, герань) возделываются в широких масштабах в качестве эфирномасличных культу]). Эфирные масла широко используются в технике, меди­цине, парфюмерии, кондитерской и других отраслях промышлен­ности.

Алкалоид ы представляют собой азотистые соли органических кислот — яблочной, лимонной, винной и др. Они образуются во всех частях растений — в корнях (белладонна), клубнях (кар­тофель), листьях (табак, чайное дерево), плодах (мак, кофейное дерево), семенах (дурман, люпин, какао) и т. д. В настоящее время известно свыше 1000 различных алкалоидов. Они имеют для растений защитное значение — предохраняют их от поедания животными, иногда играют роль запасных веществ, а также фитогормонов и стимуляторов, вызывающих усиление процессов обмена веществ на тех или иных фазах роста.

Народохозяйственное значение алкалоидов и алколоидоносных растений очень велико. Многие алколоиды (никотин, атропин, кокаин, кофеин, хинин и др.)широко применяются в медицине, ветеринарии и сельском хозщяйстве.

Гликозиды представляют собой соединения глюкозы со спир­тами и другими безазотистыми веществами. Они имеют горький вкус и обладают ядовитыми свойствами, благодаря чему предохра­няют растения от поедания животными. Гликозиды многих расте­ний (ландыш, наперстянка и др.) применяются в медицине. Для промышленности большое значение имеют глнкозиды-красители. Соли щавелевой кислоты в растительных клетках чаще всего встречаются в виде щавелевокислого кальция, ко­торый образует кристаллический песок, сферокристаллы или кри­сталлы иной формы в зависимости от вида растений. Раз­личают одиночные кристаллы, встречающиеся в сухих наружных чешуях луковиц репчатого лука и чеснока; друз ы, представляющие собой сростки многочисленных кристаллов звезд­чатой формы (в плодах жимолости, в коре многих древесных расте­ний), и рафиды — игольчатые кристаллы, часто образующие пучки (в клетках мякоти плодов фуксии, листьев лилии). Все формы, кристаллов локализуются в вакуолях. Благодаря образованию кристаллов щавелевокислого кальция происходит нейтрализация щавелевой кислоты, обладающей ядовитыми свойствами.

Кроме щавелевокислого кальция, у некоторых растений (фи­кус, конопля) образуется у г л е к.и с л ы й кальций, который пропитывает выросты клеточной оболочки, вдающиеся в полость клетки. В результате получаются своеобразные гроздевидные об­разования — цистолиты.

Кристаллы, являясь конечным продуктом обмена веществ в клет­ке, как правило, тем или иным способом удаляются из организма.

Обычно они накапливаются в тех частях растения, которые со временем от него отделяются, — в листьях, плодах, наруж­ных слоях коры. Однако в некоторых слу­чаях кристаллы могут растворяться вновь и участвовать в обмене веществ, как это наблюдается в плодах апельсина и неко­торых других растений.

Смолы являются комплексными со­единениями, образующимися из углево­дов в процессе нормальной жизнедея­тельности клеток или в результате их разрушения, У одних растений смолы на­капливаются в виде капель в клетках, у других выделяются в окружающую среду. Будучи нерастворимыми в воде, смолы не пропускают влагу, они непроницаемы для микроорганизмов, обладают антисептическими свойствами.

В практической деятельности человека смолы применяются при изготовлении лаков, смазочных масел, в медицине. Особое значение имеет смола вымерших растений — янтарь.

Д у б и л ь н ы е (дубящие) вещества представляют собой сложные органические безазотистые вещества вяжущего вкуса. Они широко распространены среди высших растений, причем особенно богаты ими клетки коры деревьев (дуб, ель, ива), листья чая, семена кофе. Обладая антисептическими свойствами, дубильные вещества защищают растения от поражения различными микроор­ганизмами, иногда они могут использоваться в качестве запасных питательных веществ..

Дубильные вещества применяются в кожевенной промышлен­ности для дубления кож, а также в медицине как вяжущее средство.

  1. Физиоло­гически активные вещества обусловливают нормальную жизнедея­тельность клетки и всего организма в целом. Они обладают специфи­ческим действием и неразрывно связаны с метаболизмом клетки. К этим веществам принадлежат ферменты, витамины, фитогормоны, антибиотики, фитонциды и ингибиторы. Все эти вещества выраба­тываются протопластом клетки.

Ферменты (энзимы) представляют собой сложные вещества белковой природы и являются биологическими катализаторами, присутствие которых необходимо для возбуждения и ускорения биохимических реакций, протекающих в клетке. Важнейшие, жиз­ненные процессы — дыхание, фотосинтез, синтез и распад белков и др. — могут совершаться только под воздействием определенных ферментов. Ферменты отличаются от неорганических катализато­ров высокой специфичностью, т. е. действие каждого фермента строго ограничено одним веществом или группой близких веществ. Специ­фичность действия ферментов является их важнейшим биологи­ческим свойством, без которого невозможен нормальный метаболизм клетки. Активность ферментов зависит от температуры, кислотности среды и от присутствия в окружающей среде различных веществ, усиливающих или подавляющих их каталитическое действие. В на­стоящее время известно свыше 800 различных ферментов.

Начало изучения ферментов относится к 1814 г., когда русский ученый К. С. Кирхгоф показал, что в прорастающем зерне имеется вещество, способное превращать крахмал в сахар. В дальнейших исследованиях ферментов большая роль принадлежит советским ученым А. И. Опарину, А. Л. Курсанову, Н. М. Сисакяну, Б. А. Ру­бину и другим, впервые начавшим изучать ферменты в живых ра­стениях и заложившим основу биологии ферментов.

Важным свойством ферментов является их способность сохранять активность вне живой клетки. На этом свойстве основано примене­ние ферментов в различных отраслях пищевой промышленности — хлебопечении, виноделии, производстве сахара, чая, какао, табака и др.

Витамины(НА ПРАКТИКЕ!!!) представляют собой органические вещества раз­ личной химической природы и почти исключительно растительного происхождения. Однако, несмотря на большое разнообразие, их объединяют в одну группу благодаря той исключительной роли, которую они играют в обмене веществ. Витамины, действующие в очень малых дозах, совершенно необходимы для нормальной жизнедеятельности как растительных, так и животных организмов. Хотя витамины не являются непосредственными источниками энер­гий, они вместе с ферментами регулируют энергетические изме­нения внутри клетки, а многие из них даже входят в состав фер­ментов.

В настоящее время известно несколько десятков различных витаминов, каждый из которых обладает специфическим действием. Так, витамин В3 стимулирует рост корней, витамин С (аскорбиновая кислота) способствует прорастанию семян, регулирует дыхание и т. д. Однако значение витаминов для растений изучено еще недо­статочно. Гораздо больше сведений имеется о роли витаминов в жизнедеятельности животных организмов. Отсутствие витаминов в пище животных и человека вызывает тяжелые заболевания.

Основоположником учения о витаминах является русский уче­ный Н. И. Лунин, который еще в 1880 г. доказал необходимость витаминов для нормальной жизнедеятельности животных организ­мов. В результате дальнейшего изучения витаминов была установ­лена их химическая природа, что позволило организовать промыш­ленное производство большинства витаминов как из растительного сырья, так и синтетическим путем.

Гормоны, вырабатываемые протопластом растительной клетки, получили название ф и т о горм о нов. Они представляют собой группу веществ, способных усиливать различные физиологические процессы — рост, размножение, деление клеток и др. Наиболее изучены в настоящее время гормоны роста — ауксины, впервые исследованные Н. Г. Холодным. Ауксины усиливают доступ кисло­рода и приток питательных веществ к клеткам, расположенным в растущих частях растения, и таким образом создают оптимальные условия для ростовых процессов.

Наряду с ауксином, который вырабатывается клетками выс­ших растений, известны ростовые вещества, вырабатываемые низ­шими растениями — грибами. К таким веществам относится гиббереллин, выделенный из почвенных грибов Gibberella и Fusarium и обладающий совершенно исключительной и многосторонней физиологической активностью.

В настоящее время ростовые вещества получили широкое при­менение в практике сельского хозяйства. Синтетически получаемый гетероауксин используется для укоренения черенков, для борьбы с опадением бутонов и плодов, для повышения семенной продуктив­ности растений и т. д. Гиббереллин применяется для получения высо­корослых и сильно облиственных растений (соя, табак, конопля), повышения урожая овощных культур (томата, огурца, баклажана) и винограда. С помощью гиббереллинов удается прерывать период покоя у семян, спящих почек, клубней, ускорять цветение и плодоношение, вызывать образование бессемянных плодов. С по­мощью гиббереллина можно также превращать двулетние рас­тения (морковь, свекла, капуста) в однолетние, плодоносящие в 1-й год жизни.

Антибиотики и фитонциды — это особые вещества, которые вырабатываются в клетках растений и имеют для них за­щитное значение, предохраняя от поражения болезнетворными микро­организмами и другими паразитами. Принято называть бактерицид­ные вещества, образующиеся в клетках низших растений (грибов и некоторых бактерий),-антибиотиками, а аналогичные вещества, выделяемые клетками цветковых растений (лука, чеснока, чере­мухи и др.), - фитонцидами. Основоположником учения о фитон­цидах является советский ученый Б. П. Токин. Бактерицидные ве­щества обладают способностью оказывать губительное действие на различные микроорганизмы, убивая или сильно задерживая рост. Как фитонциды, так и антибиотики действуют избирательно, вследствие чего для одних организмов они весьма токсичны, тогда как для других—совершенно безвредны. Фитонциды некоторых растений обладают настолько сильным действием, что убивают насекомых и даже мелких млекопитающих. В настоящее время многие антибиотики получили широкое применение в медицине в качестве лечебных препаратов для борьбы с тяжелыми инфекцион­ными болезнями. Общеизвестны такие препараты, как пенициллин, стрептомицин, синтомицин и др., получаемые в большом количе­стве заводским путем.

В практике сельского хозяйства начинают применяться фитон­цидные препараты для борьбы с различными заболеваниями расте­ний. Так, например, протравливание зерен проса, зараженных пыльной головней, фитонцидами сарептской горчицы повышает урожай проса больше чем в 3 раза. Фитонциды репчатого лука, чеснока, цитрусовых губительно действуют на гриб фитофтору, поражающий картофель.

Ингибиторами называют вещества, подавляющие ак­тивность ферментов и таким образом способствующие торможению некоторых физиологических процессов, протекающих в растении. Тормозящее действие ингибиторов имеет большое биологическое значение. Благодаря ингибиторам при преждевременном потеп­лении ранней весной задерживается распускание почек. Ингибиторы обеспечивают период покоя растений, во время которого не проис­ходит прорастания клубней, семян и т. д.

  1. Клеточный сок. Как уже отмечалось, растворимые про­дукты обмена веществ образуют водный раствор, называемый кле­точным соком. Он постепенно накапливается в вакуолях, и для взрослой, полностью дифференцированной клетки характерна одна круп­ная центральная вакуоль, объем которой часто почти равен объему всей клетки. Состав клеточного сока весьма разнообразен и в первую очередь зависит от вида растения. У большинства растений клеточ­ный сок имеет кислую реакцию, исключение составляют огурец, дыня и некоторые другие растения, у которых реакция клеточного сока щелочная.

Помимо веществ, рассмотренных выше (растворимые углеводы, белки, алкалоиды и др.), клеточный сок содержит различные кислоты, соли и пигменты. Из органических кислот чаще встреча­ются яблочная (в плодах яблони, малины, рябины, листьях табака), щавелевая (в листьях щавеля, кислицы, ревеня), винная (в плодах винограда, томата) и лимонная (в плодах лимона, смородины, кры­жовника, земляники). К органическим кислотам принадлежит также бензойная кислота, содержащаяся в плодах брусники и клюк­вы и обладающая способностью предохранять эти растения от различных болезней. Органические кислоты выполняют в клетках растений разнообразные физиологические функции, например уча­ствуют в процессе дыхания. Минеральные соли представлены в кле­точном соке нитратами, фосфатами, хлоридами и другими соединениями. Высоким содержанием нитратов отличаются крапива, щи­рица, картофель, подсолнечник, фасоль. В молодых частях расте­ний обычно накапливаются фосфаты — у лука, чеснока и др. Хлориды характерны для растений, произрастающих на засолен­ных почвах.

Наряду с пигментами пластид у растений известны пигменты клеточного сока, из которых наиболее распространены антоциан и антохлор, относящиеся к гликозидам. Особенностью антоциана является изменение его окраски в зависимости от кислотности среды: в нейтральной среде он фиолетовый, в щелочной — синий и в кислой — красный. Антоциан встречается во всех органах растений — корнях, листьях, цветках, плодах и в зависимости от его концентрации и особенностей организма может давать самые разнообразные окраски — от ярко-красных и синих до почти чер­ных. Часто присутствие антоциана в клетках связано с приспособ­лением растений к неблагоприятным условиям внешней среды и обес­печивает повышение зимостойкости растений. Антохлор встречается преимущественно в венчиках цветков, которым придает желтую окраску (у льнянки, георгина, коровяка и др.), а также в плодах некоторых цитрусовых.

Клеточный сок некоторых растений имеет белую (молочную) окраску, вследствие чего получил название млечного сока. Млечный сок (латекс) вырабатывается многими травянистыми и древесными растениями. Он представляет собой эмульсию или суспензию и содержит до 80 % воды, в которой находятся как за­пасные питательные вещества (сахара, белки, жиры), так и катаболиты (алкалоиды, гликозиды, смолы, дубильные вещества, а также каучук и гуттаперча). Часто в нем встречаются крахмальные зерна своеобразной формы. У некоторых растений млечный сок имеет, желтую (мак) или оранжевую (чистотел) окраску, что обусловлено присутствием различных пигментов. Млечный сок скапливается в специальных элементах — млечниках. Роль млечного сока в жизни растений отчасти связана с хранением питательных веществ, с за­щитой от поедания животными, однако значение его еще недостаточно выяснено.

studfiles.net

Конституционные и запасные вещества - Справочник химика 21

    Из двух групп белковых веществ конституционные белки были почти в 4 раза богаче меченым азотом, чем белки запасные. Эти данные служат прямым доказательством того положения, что весь процесс переработки неорганического азота (в данном случае аммиачного азота) в белки протекает в растениях очень быстро, при этом в первую очередь происходит [c.160]     КОНСТИТУЦИОННЫЕ и ЗАПАСНЫЕ ВЕЩЕСТВА [c.390]

    Все. морфологические изменения и уродства являются следствием глубоких нарушений физиологических процессов в растениях. У растений, обработанных гербицидами, в первое время усиливается интенсивность дыхания, затем тормозится процесс фотосинтеза в результате разрушения хлорофилла и прекращения его биосинтеза. Происходит гидролитический распад сложных органических веществ — крахмала, инулина, белков, прекращаются процессы синтеза, В результате в первое время после обработки в растениях увеличивается содержание подвижных форм углеводов, сахаров и уменьшается содержание запасных и конституционных форм пластических веществ. Резко уменьшается поступление в растение азота, фосфора, калия и прекращается синтезирующая деятельность корневой системы. Нарушается водный обмен, теряется состояние тургора, растение завядает. [c.300]

    Нельзя рассматривать запасные и конституционные белки как совершенно обособленные и не взаимодействующие между собой группы белковых веществ. [c.166]

    Существовавшее ранее представление об относительной стабильности конституционных белков растений оказалось неправильным. Конституционные белки протоплазмы, так же как и запасные вегетативные белки, вовлекаются в общий обмен веществ в организме растений и непрерывно обновляются. [c.174]

    Повышение интенсивности обновления запасных белков в растениях во время колошения, возможно, находится в связи с процессами интенсивного оттока белковых веществ из вегетативных частей растений в репродуктивные органы, когда происходит усиленное образование запасных белков для формирования колоса. Интенсивность же обновления конституционных белков в стареющих органах растений падает. Особенно резко это проявилось в опыте с тимофеевкой, где конституционные белки даже за 120 часов обновились только на 66,7%, в то время как в молодых растениях овса и ржи конституционные белки полностью обновлялись в течение 72 часов. Интенсивность обновления хлорофилла при старении растений также падает. Если в молодых растениях овса и ржи (1) азот хлорофилла в течение 48 часов обновлялся примерно на 60%, то в стадии колошения овса за тот же период обновилось только 25% азота хлорофилла. [c.179]

    Из результатов этого опыта также следует, что скорость обновления двух групп выделенных нами из растений белковых веществ — конституционных и запасных белков — весьма различна. Конституционные белки обновляются со значительно большей интенсивностью, чем запасные. В других опытах, с более короткими экспозициями растений на Ы , меченый азот мог быть обнаружен в конституционных белках в более ранние сроки, чем в запасных белках. Это дает известное основание предполагать, что вначале синтезируются конституционные белки, которые, претерпевая соответствующие изменения, превращаются в более подвижные запасные белки. [c.191]

    Сопоставление данных о распределении меченого азота по отдельным фракциям азот истых веществ растений в различные сроки после внесения подкормки позволило сделать вывод о том, что поступивший в растение минеральный азот МНз включается в состав отдельных органических азотистых соединений в известной последовательности. Вначале происходит синтез небелковых азотистых органических соединений (аминокислоты, амиды), образование же белков происходит несколько позже. При этом из двух групп белковых веществ конституционные белки синтезируются значительно быстрее, чем запасные белки. Этот вывод пол Ностью подтверждается результатами ранее проведенных исследований с молодыми растениями озимой ржи. [c.48]

    Если В ранних фазах роста и развития растений овса конституционные белки обновляются значительно быстрее и интенсивнее запасных белков (см. табл. 3), то в фазе колошения конституционные и запасные белки обновляются примерно с одинаковой интенсивностью. В колосьях же запасные белки обновляются значительно быстрее конституционных. Резкое повышение интенсивности обновления запасных белков в колосьях в фазе колошения, повидимому, находится в связи с интенсивным оттоком белковых веществ из листьев и стеблей в репродуктивные органы. Наконец, в этой фазе развития растений значительно понижается интенсивность обновления азотистого состава хлорофилла. Если в молодых растениях овса при нормальных условиях калийного питания азот хлорофилла обновляется в течение 48 часов примерно па 60%, то в фазе колошения — лишь на 25 %. [c.53]

    Результаты опытов, проведенных с использованием меченого азота, показывают, что в живых тканях растения белковые вещества не остаются постоянными, а находятся, наоборот, в состоянии непрерывного распада и новообразования. Это характерно не только для запасных белков, но и для белков, входящих в состав живой протоплазмы (так называемых конституционных). [c.456]

    Все содержащиеся в растении органические вещества делят на конституционные и запасные. Конституционные соединения являются структурными компонентами скелетной основы растения, его осевых частей и органов, а также цитоплазмы н органелл растительной клеткн. К ним относятся главным образом полисахариды, преимущественно клетчатка, белки, нуклеиновые кислоты и липиды. [c.390]

    К вторичным продуктам ассимиляции, которые откладываются в цитоплазме, пластидах и вакуолях при их высыхании, относятся белковые вещества, синтезируемые в виде протеиновых зерен в живых периферических клетках запасающей ткани семян пшеницы, ржи и других злаков. Протеиновые зерна содержатся также в масличных семенах клещевины, грецкого ореха и др. Запасные белки по своему строению и составу отличаются от конституционных живых белков, составляющих основу цитоплазмы. Запасные жиры в семенах откладываются в виде капелек и легко извлекаются органическими растворителями (например, эфиром). Жир, являющийся структурным компонентом протопласта, можно получить только после распада сложных комплексов белков с жирами и липоидами, что происходит при денатурации белков цитоплазмы. [c.391]

    Давно замечено, что в первые периоды роста сельскохозяйственные культуры поглош,ают фосфаты интенсивнее, чем в последующие. Известно, например, что к моменту, 1ргда кукуруза синтезировала 25% сухих веществ урожая, она поглотила 75% фосфора (от общего его содержания). Растение создает резерв этого вещества, перераспределяя его потом между органами, в зависимости от потребности их в фосфатах для синтеза органических веществ (конституционных и запасных). В физиологических опытах с ячменем было найдено, что даже полное исключение фосфора из питательного раствора после пятинедельного роста не отражалось отрицательно ни н его урожае, ни на качестве зерна. Формирование зерна шло вследствие миграции фосфатов из вегетативных органов в репродуктивные. В аналогичном эксперименте с яровой пшеницей снятие ее с фосфатного питания сразу же по выко-лашивании также не причиняло ущерба растению. [c.237]

    Отжатая и отмытая от всех растворимых веществ масса растений (мезга) высушивалась, и в ней определялось содержание общего азота. Полученные данные должны характеризовать содержание нерастворимых, более устойчивых белков в растении. В зеленых растениях белковые вещества представлены двумя основными группами конституционными белками. протоплазмы (плазменными белками) и запасными белками. Существует представление (Костычев, 1933 Сабинин, 1940 Nightingale, 1937), что конституционные белки протоплазмы обладают очень высокой устойчивостью и слабой изменчивостью. Образуя основной остов протоплазмы, эти группы белков пребывают как бы в связанном состоянии (Костычев, 1933) и почти не вовлекаются в азотный обмен в растении. Запасные же белки, наоборот, весьма лабильные соединения. Они обладают большой растворимостью и легко расШепляются про-теолитическими ферментами до полипептидов и аминокислот и [c.158]

    В убранных растениях определялся неорганический азот (аммиачный Ы), азот органических небелковых соединений, представленный в опытных растениях в основном аминокислотами, азот хлорофилла, азот коллоиднорастворимых белков и азот нерастворимых тканевых белков. Методика выделения этих соединений азота описана ранее [3]. Коллоиднорастворимые белки ввиду их большей подвижности (в соответствии с принятым подразделением белков зеленых частей растений) мы будем в дальнейшем обозначать как запасные белки, а менее подвижные нерастворимые тканевые белки — как конституционные белки. Эти группы белковых веществ весьма различны по их аминокислотному составу. [c.187]

    Установленное с этих опытах обновление азотистого состава белка и пиррольного ядра хлорофилла в основном обусловлено непрерывно происходящим в организме растений процессом распада и самообновления этих веществ. Этот процесс протекает в молодых растениях чрезвычайно интенсивно. В течение 72 часов в вариантах опыта с нормальной дозой калия произошло почти полное обновление конституционного белка (91%) и азота, х,лорофилла (95%). Обпогиение запасных белков происходит медленнее, но и эти белки через 120 часов практически полностью обновляются. [c.51]

chem21.info

Запасные белок - Большая Энциклопедия Нефти и Газа, статья, страница 1

Запасные белок

Cтраница 1

Запасные белки, находящиеся в эндосперме или семядолях, малорастворимы ( или вовсе нерастворимы) в воде, не проходят через клеточные оболочки, не используются непосредственно развивающимся зародышем. При прорастании семян они претерпевают глубокий распад с образованием растворимых и подвижных аминокислот. Гидролизуются белки под действием протеолитических ферментов. В прорастающих зернах пшеницы активность протеиназы усиливается приблизительно в 40 раз и гидролиз белков протекает с большой скоростью.  [1]

Запасные белки, которые служат источниками углерода и азота прорастающих семян, состоят из ограниченного повторяющегося набора аминокислот. Аминокислотный состав запасных белков семян можно немного изменить обычным скрещиванием, а недавно для этих целей были использованы генноинженер-ные методы.  [2]

Запасные белки локализованы в определенных субклеточных структурах ( фото 51) - белковых телах, которые можно выделить из клеточных гомогенатов [77] и которые, вероятно, содержат только глобулины.  [3]

Запасные белки, находящиеся в эндосперме или семядолях, малорастворимы ( или вовсе не растворимы) в воде, не проходят через клеточные оболочки, не используются непосредственно развивающимся зародышем. При прорастании семян они претерпевают глубокий распад с образованием растворимых и подвижных аминокислот. Гидролизуются белки под действием протеолитиче-ских ферментов. В прорастающих зернах пшеницы активность протеиназы усиливается приблизительно в 40 раз и гидролиз белков протекает с большой скоростью. Из получившихся аминокислот синтезируются новые белки, идущие на питание развивающегося зародыша и построение тканей растения.  [4]

Запасные белки образуются в результате превращения конституционных белков.  [5]

Запасные белки перевариваются ( гидролизуются) с высвобождением аминокислот - основных структурных единиц белка. Из этих аминокислот синтезируются ферменты ( все ферменты - белки), например а-амилаза; эти ферменты используются затем для переваривания питательных веществ эндосперма.  [6]

Эти же запасные белки имеют дополнительную функцию связывания споровой ДНК, повышая таким образом ее устойчивость к облучению. Энергия для восполнения отсутствующих компонентов может быть получена из стабильного 3-фосфоглицерата путем его конвертации в источник энергии и фосфата - фосфоенолпируват.  [8]

Местом отложения запасных белков в семенах являются алейроновые зерна, погруженные в цитоплазму. В алейроновых зернах белки находятся в виде кристаллоидов и глобоидов, содержащих различные по свойствам группы белков.  [9]

Повышение интенсивности обновления запасных белков в растениях во время колошения, возможно, находится в связи с процессами интенсивного оттока белковых веществ из вегетативных частей растений в репродуктивные органы, когда происходит усиленное образование запасных белков для формирования колоса. Интенсивность же обновления конституционных белков в стареющих органах растений падает. Особенно резко это проявилось в опыте с тимофеевкой, где конституционные белки даже за 120 часов обновились только на 66 7 %, в то время как в молодых растениях овса и ржи конституционные белки полностью обновлялись в течение 72 часов. Интенсивность обновления хлорофилла при старении растений также падает. Если в молодых растениях о-вса и ржи ( 1) азот хлорофилла в течение 48 часов обновлялся примерно на 60 %, то в стадии колошения овса за тот же период обновилось только 25 % азота хлорофилла.  [10]

В основном это касается запасных белков.  [11]

В этом опыте обновление запасных белков происходило менее интенсивно, чем в предыдущем-с рожью, что, по-видимому, обусловлено особенностями метаболизма щавеля.  [12]

В каких частях растения откладываются запасные белки.  [13]

Хотя относительно протеаз, гидролизующих запасные белки семян, известно немногое, а об их регуляции по существу ничего не известно, было показано, что проростки способны переработать относительно большие количества аммиака, который образуется в результате окисления аминокислот. Глутаминсин-тетаза и аспарагинсинтетаза описаны в гл.  [14]

Наконец, следует упомянуть группу запасных белков.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Запасные белок - Большая Энциклопедия Нефти и Газа, статья, страница 2

Запасные белок

Cтраница 2

Основная масса белков семян злаков - запасные белки, представляющие собой альбумины, глобулины, проламины и глюте-лины.  [16]

Скорость обновления РНК в период накопления запасных белков с 8-го по 35 - й день неизвестна.  [17]

Даниэльссон [25] показал, что основная масса запасных белков в развивающихся и созревающих семядолях гороха ( фиг. Эти два запасных белка не только различаются по растворимости, константам седиментации и аминокислотному составу, но и откладываются также с неодинаковой скоростью в период развития. Какое значение может иметь для растения наличие двух запасных глобулинов, не ясно. То, что оба эти белка играют запасную роль, подтверждается их исчезновением во время прорастания. Ферментативная активность у этих запасных глобулинов не обнаружена. Предполагают, что большую часть альбуминовой фракции составляют ферменты, не связанные с частицами. На эту фракцию приходится небольшая часть общего азота гороха, и в процессе развития и прорастания семян эта фракция незначительно изменяется.  [18]

Кроме триглицеридов в созревающих масличных семенах накапливаются также запасные белки. Суммарное содержание масла ( запасных липидов) и запасных белков составляет до 80 % массы созревших масличных семян.  [19]

При внесении меченой азотной подкормки содержание в корнях мобильных, запасных белков резко повышалось за счет их оттока из листьев растений. Высказано предположение, что переработка в корнях неорганического азота осуществляется при участии запасных белков, как носителей соответствующих ферментных систем, катализирующих Синтез аминокислот в растении. При повышенном притоке неорганического азота содержание этих белков в корнях становится недостаточным и растения восполняют этот недостаток оттоком запасных белков из листьев в корни.  [20]

Выполненные в нашей лаборатории анализы В. М. Мака-ревич показали, что запасные белки всех исследованных растений совершенно не содержат пролина и что они значительно богаче триптофаном, аланином, валином и лейцином, чем конституционные белки.  [21]

Если в ранних фазах роста и развития растений овса конституционные белки обновляются значительно быстрее и интенсивнее запасных белков ( см. табл. 3), то в фазе колошения конституционные и запасные белки обновляются примерно с одинаковой интенсивностью. В колосьях же запасные белки обновляются значительно быстрее конституционных. Резкое повышение интенсивности обновления запасных белков в колосьях в фазе колошения, невидимому, находится в связи с интенсивным оттоком белковых веществ из листьев и стеблей в репродуктивные органы. Наконец, в этой фазе развития растений значительно понижается интенсивность обновления азотистого состава хлорофилла.  [22]

Сконструированы такие генноинженерные сорта сои, которые проявляют устойчивость к насекомым, гербицидам, вирусам и образуют больше запасных белков, обогащенных метионином.  [23]

Характерной особенностью хлоропластов большинства водорослей являются так называемые пиреноиды - тела неправильной формы, содержащие, как предполагают, запасные белки и часто окруженные крахмальным сдоем ( см. фиг. По Бозе [67], масляные капельки, образующиеся при фотосинтезе у водорослей, сперва появляются в этих слоях.  [24]

Из результатов этого опыта также следует, что скорость обновления двух групп выделенных нами из растений белковых веществ - конституционных и запасных белков - весьма различна. Конституционные белки обновляются со значительно большей интенсивностью, чем запасные. В других опытах, с более короткими экспозициями растений на N15, меченый азот мог быть обнаружен в конституционных белках в более ранние сроки, чем в запасных белках. Это дает известное основание предполагать, что вначале синтезируются конституционные белки, которые, претерпевая соответствующие изменения, превращаются в более подвижные запасные белки.  [25]

При обсуждении результатов химического анализа растений мы указывали, что по этим данным невозможно было установить какие-либо закономерности в изменении содержания запасных белков в растениях при различных сроках их уборки. Результаты изотопного анализа, наоборот, указывают на сильное обновление азота этих ( белков через 48 и 96 часов после внесения подкормки с меченым азотом. Это заставляет нас признать, что в действительности зайасные белки, так же как и конституционные, подвергались непрерывным изменениям в организме растений.  [26]

Кальций усиливает обмен веществ в растениях, играет важную роль в передвижении углеводов, оказывает влияние на превращение азотистых веществ, ускоряет распад запасных белков семени при прорастании. Кроме того, он имеет существенное значение для построения нормальных клеточных оболочек и для установления благоприятного кислотно-щелочного равновесия в растениях.  [27]

Если в ранних фазах роста и развития растений овса конституционные белки обновляются значительно быстрее и интенсивнее запасных белков ( см. табл. 3), то в фазе колошения конституционные и запасные белки обновляются примерно с одинаковой интенсивностью. В колосьях же запасные белки обновляются значительно быстрее конституционных. Резкое повышение интенсивности обновления запасных белков в колосьях в фазе колошения, невидимому, находится в связи с интенсивным оттоком белковых веществ из листьев и стеблей в репродуктивные органы. Наконец, в этой фазе развития растений значительно понижается интенсивность обновления азотистого состава хлорофилла.  [28]

Так, например, известно, что в целых колосьях пшеницы ( 20 дней после оплодотворения) включение аминокислот, меченных С14, в цитоплаз-матические белки ингибируется фторацетатом, тогда как включение в запасные белки оказывается нечувствительным к этому соединению. Включение меченых аминокислот в бесклеточной фракции белковых тел не зависит от добавления АТФ или системы, генерирующей энергию, а также от добавления рибосом или над-осадочной фракции. После разрушения изолированных белковых тел ультразвуком удается выделить рибосомы, активирующие ферменты и транспортную РНК.  [29]

Повышение интенсивности обновления запасных белков в растениях во время колошения, возможно, находится в связи с процессами интенсивного оттока белковых веществ из вегетативных частей растений в репродуктивные органы, когда происходит усиленное образование запасных белков для формирования колоса. Интенсивность же обновления конституционных белков в стареющих органах растений падает. Особенно резко это проявилось в опыте с тимофеевкой, где конституционные белки даже за 120 часов обновились только на 66 7 %, в то время как в молодых растениях овса и ржи конституционные белки полностью обновлялись в течение 72 часов. Интенсивность обновления хлорофилла при старении растений также падает. Если в молодых растениях о-вса и ржи ( 1) азот хлорофилла в течение 48 часов обновлялся примерно на 60 %, то в стадии колошения овса за тот же период обновилось только 25 % азота хлорофилла.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Белки запасные - Справочник химика 21

    Из двух групп белковых веществ конституционные белки были почти в 4 раза богаче меченым азотом, чем белки запасные. Эти данные служат прямым доказательством того положения, что весь процесс переработки неорганического азота (в данном случае аммиачного азота) в белки протекает в растениях очень быстро, при этом в первую очередь происходит [c.160]     К счастью, многие процессы в живых организмах имеют также и запасные пути протекания. Часто при этом в качестве исходных веществ используются различные соединения. Например, если запасы глюкозы в организме истощаются, то основанные на этом веществе энергетические процессы останавливаются. При этом в одном из запасных вариантов происходит окисление жиров, в другом - разрушаются и превращаются в глюкозу структурные белки. Как только глюкоза снова начинает поступать в организм, ее метаболизм возобновляется. Получение глюкозы из белков значительно менее энер- [c.256]

    Имеются три обширные группы запасных белков гороха легумин, вицилин и конвицилин каждая из этих групп представлена несколькими полипсттидами. [c.58]

    Части растений органический небелковый конституционные белки запасные белки хлоро- филл [c.52]

    Информация об общем содержании белков и их аминокислотном составе не дает полного представления о питательной ценности исследуемого продукта. Анализы аминокислотного состава дают ценные сведения лишь относительно потенциальной пищевой пригодности белка, так как набор аминокислот, полученный после кислотного гидролиза, не всегда соответствует набору физиологически доступных аминокислот. Необходимо учитывать соответствие и доступность белков действию протеолитических ферментов. Последняя определяется типом белков (запасные, транспортные, структурные и т. д.) и их соотношением в клетке прочностью клеточной оболочки и ее составом происхождением белков (растительные, животные, бактериальные). [c.75]

    В семенах растений обнаружены три типа белков (в зависимости от их функции) структурные белки, запасные белки и ферменты. Интересно отметить, что все белки семян характерны только для семян, поскольку даже с помощью современных высокочувствительных иммуноферментных методов не удалось обнаружить эти белки в других частях растения. [c.42]

    Применение методов генетической инженерии для улучшения аминокислотного состава запасных белков растений [c.149]

    Ж-— важнейшие органические соединения, входящие вместе с белками и углеводами в состав всех растительных и животных организмов как запасные питательные материалы и как источник энергии. [c.98]

    В тканях растений Ц. довольно быстро распадаются с отщеплением боковой цепи и далее с разрывом пуринового кольца более устойчивы (но менее активны) их транспортные формы, а также запасные формы - конъюгаты, к-рые Ц. образуют с глюкозой, аланином и нек-рыми белками, присоединяя их к атомам N кольца или атомам О боковой цепи. [c.389]

    Локализация мест синтеза запасных белков [c.135]

    Занятые орбитали 3/233, 234 Запасные белки 1/470 2/559 4/190, [c.607]

    Решение проблемы создания новых форм растений подразумевает в первую очередь повышение качества синтезируемых растением продуктов, которые определяют его питательную и техническую ценность. В основном это касается запасных белков. [c.149]

    В большинстве случаев запасные белки растений имеют несбалансированный для питания человека и животных аминокислотный состав. Так, запасные белки злаков — проламины — бедны лизином, триптофаном и треонином, что снижает их питательную и кормовую ценность. Улучшение аминокислотного состава белка путем традиционной селекции не дает желательных результатов, поскольку необходимые гены часто сцеплены с нежелательными признаками и наследуются вместе. Например, у мутантов кукурузы и ячменя повышение содержания лизина коррелировало с уменьшением синтеза основных запасных белков — зеи-на и гордеина, а также с уменьшением урожайности. [c.149]

    ДНК, определяющих данный механизм 3) целенаправленное изменение последовательностей генов запасных белков для улучшения аминокислотного состава 4) создание векторов, содержащих измененный ген 5) введение модифицированных генов в растения. [c.150]

    Белки эндосперма семян зерновых культур подразделяют на 4 класса в соответствии с их растворимостью (Осборн, 1907) [121] альбумины, глобулины, проламины и глютелины, из которых два последних класса относят к запасным белкам. Как видно из таблицы 2.3, каждый из этих классов белков может быть более или менее важным у конкретных видов зерновых. [c.52]

    По современным представлениям запасные белки зерновых и бобовых, видимо, синтезируются с некоторой задержкой (латентностью) после оплодотворения семяпочки затем следует период быстрого накопления до созревания семени. [c.60]

    Что касается аминокислотного состава, то во всех этих случаях он такой же, как у запасных белков. В наибольшей степени представлены аргинин, аспарагиновая и глутаминовая кислоты и их амиды концентрация серосодержащих аминокислот незначительна (табл. 6А.2). [c.156]

    С 1960-х годов и особенно в 80-е годы для проведений фундаментальных исследований по растительным белкам вер больше используются специфические антитела. Иммунохимические методы использовались при изучении белков с различными функциональными свойствами, таких, как ферменты, изо-ферментные компоненты, ингибиторы протеаз, лектины, запасные белки. Эти методы применялись при решении задач идентификации белков, определения их содержания, очистки, локализации в тканях, клетках и клеточных структурах, а также энзиматической регуляции. Они использовались в исследованиях по физиологии, патологии, биохимии, генетике и молекулярной биологии растений. Очень многие работы в этой области нашли отражение во множестве обзорных статей [12, 21—23, 26, 29, 35, 50, 57, 79, 83, 96]. [c.112]

    Но наиболее значительные скопления белка, которые можно наблюдать у растений, встречаются в тканях некоторых семян. Именно там и располагаются запасные белки, которые являются темой данной книги. Эти белки, имеющие большое значение как для самого растения в период прорастания, так и для питания человека или животного, образуют в клетке многочисленные оформленные элементы, называемые белковыми тельцами, или алейроновыми зернами, форма и структура которых зачастую специфичны для определенного ботанического вида. [c.126]

    Если синтез запасных белков на рибосомах, связанных с эндоплазматической сетью, в настоящее время считается весьма типичным явлением, то формирование самих белковых телец, видимо, происходит четко различными путями с вовлечением либо эндоплазматической сети, либо вакуолярного аппарата. [c.135]

    Белки содержатся во всех частях растения. Наибольшее количество белков находится в семенах, где они накапливаются до 34%. Протоллазматические белки, находящиеся в листьях и стеблях, по химическому составу и свойствам отличаются от белков запасных, расположенных в Семенах. [c.280]

    Полисахариды (полимерные углеводы) представляЕот собой соединения, состоящие из многих сотен нли даже тысяч моносаха-ридных звеньев. Их состав отвечает общей формуле (СеНюОз) . Наиболее важными среди полисахаридов являются целлюлоза и крахмал. Оба эти вещества образуются в растениях из диоксида углерода и воды в результате фотосинтеза. Целлюлоза — основной строительный материал растений, крахмал служит запасным пищевым фондом растений и находится в основном в семенах (кукуруза, картофель, рис, пшеница и др.). Углеводы служат источником питания человека. В организме человека и животных они превращаются в жиры и белки. Целлюлоза в виде хлопка и вискозы применяется для изготовления одежды и бумаги. [c.307]

    Биологическая роль. Ж - одна из осн. групп в-в, входящих, наряду с белками и углеводами, в состав всех растит, и животных клеток. В организме животных различают запасные и плазматич. Ж. Запасные Ж. откладываются в подкожной клетчатке и в сальниках и являются источником энергии. Плазматич. Ж. структурно связаны с белками и углеводами и входят в состав большинства мембран, Ж. обладают высокой энергетич ценностью при полном окислении в живом организме 1 г Ж выделяется 37,7 кДж, что в два раза больше, чем при окислении 1 г белка или углевода. Благодаря низкой теплопроводности Ж играют важную роль в теплорегуляции животных организмов, предохраняя животных, особенно морских, от переохлаждения. Вследствие своей эластичности Ж играют зашитную роль в коже позвоночных и в наружном скелете насекомых. Ж необходимая составная часть пищи. Норма потребления взрослым человеком 80 100 г/сут [c.157]

    Все каллусные клетки, готовые ко вторичной дифференциров-ке, т. е. детерминированные, характеризуются общими чертами. Эти клетки — клетки-инициали — образуют утолщенную клеточную стенку, обособляясь от остальных каллусных клеток. Для них характерно более крупное ядро, большее количество запасных веществ, меньшие размеры вакуолей. В клетках-инициалях начинается синтез определенных белков, интенсифицируется пенто-зофосфатный путь расщепления гексоз. Очень важно, что между этими клетками, формирующими меристематические очаги, восстанавливаются плазмодесмы, которые практически отсутствуют в массе каллусных клеток. [c.174]

    КАЗЕИН (от лат. aseus-сьф), осн. белковая фракция коровьего молока относится к запасным белкам. Представляет собой смесь неск. фосфопротеидов (осн. компоненты-а , - и к-К.) сходной структуры. В коровьем молоке содержание К. составляет 2,8-3,5% по массе (от всех белков молока-ок. 80%), в женском-в два раза меньше. Содержание а -, - и к-К. от всего К. составляет соотв. 54,2, 30,1 и 13,3%. В фракцию К. входит также у-К. (2,5% от всего К.)-продукт частичного протеолиза -K., катализируемого протеиназой молока. Осн. компоненты К. имеют генетич. варианты, отличающиеся неск. аминокислотными остатками. Изучена первичная структура всех К. и их физ.-хим. св-ва. Эти белки имеют мол. массу ок. 20 тыс., изоэлектрич. точку (р/) ок. 4,7. Содержат повыш. кол-ва пролина (полипептидная цепь имеет -структуру), устойчивы к действию денатурантов. Остатта фосфорной к-ты (обычно в виде Са-соли) образ)тот сложноэфирную связь гл, обр. с гидроксигруппой остатков серина. Высушенный К.-белый порошок без вкуса и запаха, практически не раств. в воде и орг. р-рителях, раств. в водных р-рах солей и разб. шелочей, из к-рых выпадает в осадок при подкислении. [c.284]

    Генно-инженерные методы более перспективны для создания улучшенных сортов, так как позволяют избирательно вводить в геном растения-реципиента гены искомого признака. Операции по получению трансгенных растений с улучшенным аминокислотным составом белка разделены на ряд этапов 1) клонирование генов запасных белков 2) изучение механизмов тканеспецифичной и временной экспрессии белков и вьювление последовательностей [c.149]

    В настоящее время клонированы 10 генов гордеинов ячменя, гены а- и -глиадинов и глютенина пшеницы, зеинов кукурузы, легумина бобовых, пататина картофеля и ряд других. Имеются практические результаты трансформации растений. Так, введение в геном пшеницы модифицированного гена проламина привело к активному синтезу модифицированного белка, а также повлияло на состав и уровень соответствующих запасных белков. В итоге улучшилось хлебопекарное качество пшеничной муки. [c.150]

    Во время процесса дедифференциации, который у всех клеток сходен, клетки должны утратить характерные черты исходной ткани. В первую очередь они теряют запасные вещества — крахмал, белки, липиды. В них разрушаются специализированные клеточные органеллы, в частности хлоропласты, но возрастает число ами-лопластов. Кроме того, разрушается аппарат Гольджи, перестраиваются эндоплазматический ретикулюм и элементы цитоскелета. [c.165]

    Обычно для изучения генетического детерминизма используют фракции альбуминов и глобулинов, которые в основном представлены ферментами, и проламиновую фракцию, представляющую часть запасных белков, вследствие их значительного биохимического полиморфизма, с одной стороны, и их роли в определении качества — с другой. Глютелиновую фракцию изучают всего лищь несколько лет, так как работы, в которых удалось добиться полной растворимости, были проведены совсем недавно. [c.52]

    Фасоль Phaseolus vulgaris). Фазеолин представляет собой наиболее важный запасной глобулин фасоли, поскольку на него приходится до 60 % общего содержания белка. [c.57]

    Горох Pisum sativum). Если работы по генетике гороха были начаты Менделем в 1865 г., то благодаря недавним физикохимическим и генетическим исследованиям достаточно прояснилось наследование запасных белков [30, 169—172]. [c.58]

    Соя (Gly ine шах). Запасные белки семядолей сои были предметом многочисленных исследований (см. обзор Дербишайра с соавторами [37]). Как и в горохе, в сое имеются запасные [c.59]

    Наоборот, в отнощении ячменя нет столь четких результатов. Если и были получены мутанты, имеющие количественные и качественные отличия по содержанию их запасного белка, то один Riso 56 (или Ног-2са) соответствует мутации структурного локуса Ног-2 [154]. У фасоли также было обнаружено существование доминантного гена, действие которого значительно уменьшает количество продуцируемого фазеолина [16]. Вероятно, что будут выявлены и другие типы модели регуляции. Однако и эти упомянутые результаты обнадеживают и ясно показывают, на какие новые пути ориентированы исследования. [c.61]

    Какие способы позволяют наблюдать и изучать in situ клеточные белки Мы увидим далее, что сохранение белков и их макромолекулярной архитектоники вследствие участия белков во всех клеточных структурах составляет первостепенную проблему для цитологов. Последовательно рассмотрим цитологические и цитохимические приемы, используемые при световой микроскопии, а затем при электронной микроскопии классическую фиксацию, ультракриотомию, криовытравливание (низкотемпературное травление). Мы увидим также, что может дать для изучения белков применение новейших цитологических методов, таких, как иммуноцитохимия и радиоавтография. Далее мы попытаемся подвести итоги современных знаний о структуре и ультраструктуре запасных белков, об их генезисе и эволюции в клетках, будь то кристаллические протеины или белковые тельца. [c.126]

    Белковые тельца — наиболее распространенная и известная форма хранилищных образований запасного белка в масштабах клетки. Обычно они встречаются в семенах, где могут составлять значительную часть объема протоплазмы. Они располагаются также в клетках эндосперма и семядолей или первичного вещества зародыша. Название белковые тельца, которое предложил Перноле [76], применяется здесь с большим предпочтением, чем другие, более ограничительные, такие, как алейроновые зерна, протеопласты, белковые гранулы и т. п. [c.129]

    С помощью методов радиоавтографии [6, 17] или иммуно-цитохимии [26, 27, 11, 67] удалось определить места на шероховатой эндоплазматической сети (ШЭС), где происходит синтез запасных белков семян. Белки, синтезированные на полирибосомах, связанных с ШЕС, сразу проходят через мембрану сети благодаря наличию на N-конце полипептидов с гидрофобными свойствами короткой последовательности, называемой сигнальной [15, 45]. Существование такой последовательности в настоящее время установлено у бобовых и злаковых [18, 23, 32]. При появлении (в просвете эндоплазматической сети) этой последовательности она отделяется от новосинтезированной цепи специфической пептидазой. В процессе прохождения через мембраны шероховатой эндоплазматической сети некоторые белки могут также становиться гликоксилированными [62, 5, 65]. Таким образом, механизм анаболизма запасных белков очень сходен с механизмами, описанными для секреторных клеток животных [70] и растений [46]. [c.135]

    Во многих других случаях, наоборот, запасные белки откладываются в вакуолях. Именно вакуолярный аппарат, разделяясь на части в процессе вызревания семян, порождает белковые тельца. Вакуолярное происхождение белковых телец, в частности, было установлено в эндосперме клещевины [34], пшеницы, ячменя и овса [71, 12, 93], а также в семядолях некоторых бобовых — фасоли обыкновенной [69], Vigna ungui ulata [36] или сои [122]. Транспорт запасных белков из места синтеза— шероховатой эндоплазматической сети к вакуолям, где они накапливаются, может осуществляться путем непосредственного соединения этих двух структур. В крахмалистом эндосперме овса действительно обнаружены [93] отчетливые очертания соединения между элементами эндоплазматической сети и вакуолями. Просвет в ШЭС прямо и без перерыва переходит в межвакуоль-ное пространство. Однако некоторые исследования свидетельствуют об участии пузырьков Гольджи в переносе ШЭС-вакуоль. По данным исследований [12[, диктиосомы, секретирующие интенсивно окрашенные пузырьки, располагаются вокруг формирующихся белковых телец в эндосперме семян некоторых зерновых культур (пшеница, ячмень, овес, рис). Содержимое белковых телец, как и пузырьков, может быть переварено протеазами. [c.136]

    Например, в клетках семядолей Vi ia faba [20] установлено образование белковых телец из вакуолей, тогда как другие авторы [66] указывают на их ретикулярное происхождение (из эндоплазматической сети). Недавние исследования [1, 67) показали, что эти два процесса, по существу, соответствуют двум последовательным способам запасания глобулинов. В начальный период запасные белки накапливаются в вакуолях, которые довольно быстро разделяются на части и дают начало первым белковым тельцам. На второй стадии одновременно с синтезом белков в ШЭС появляются тяжи гладкого ретикулума. Они заполняются плотным веществом, расширяются и сливаются, образуя новые белковые тельца. По мнению Адлера и Мюнца [1], эти два типа биогенеза белковых телец являются вариантами одного механизма, поскольку у растительных клеток было показано ретикулярное происхождение вакуолей [57, 58], [c.137]

    Растительные клетки имеют возможность откладывать в запас белки в основных своих компартментах. Величина такого накопления очень изменчива, неодинакова у разных растений, органов, тканей. Бесспорно, семена содержат самые большие количества этих запасных белков и поэтому служат важным источником питания для человека и животных. Запасаемые и хранимые в вакуолях, эти белки находятся в форме белковых телец, или алейроновых зерен, число, распределение, структура и состав которых характерны для определенного ботанического вида. Скопления белков, которые можно наблюдать в растительных клетках за пределами вакуолей, почти всегда имеют кристаллическую или псевдокристаллическую структуру и, как правило, менее обильны. Поскольку с помош,ью генетических методов пытаются повысить содержание белковых телец вакуольного происхождения, вероятно, можно предполагать получение таких видов растений, которые будут накапливать большое количество белков и в других отделах клетки. [c.141]

    Это различие между глобулинами и альбуминами по их физиологической роли в семенах обусловлено существенными различиями в аминокислотном составе этих двух фракций. В частности (табл. 6А.1), альбумины обычно имеют повышенное количество серосодержащих аминокислот и лизина. Аминокислотный состав глобулинов характерен для запасных белков, богатых аспарагиновой и глутаминовой кислотами и их амидами, с одной стороны, и аргинином — с другой. [c.151]

chem21.info

Белки репродуктивные

ФЕРМЕНТЫ — специфические белки, присутствующие во всех живых клетках и играющие роль биологических катализаторов. Резистентность организмов к специфическим поллю-тантам (напр., пестицидам различных классов) обусловлена активностью специфических Ф., способных расщеплять эти соединения в организме до нетоксичных продуктов. ФЕРТИЛЬНОСТЬ [от лат. /егНИз — плодородный] — способность организмов производить потомство, его репродуктивная функция.[ ...]

Появление специфических «репродуктивных» белков и белков эвокации свидетельствует в пользу представления о том, что под влиянием гормонов цветения происходит экспрессия новых генов, обусловливающих образование цветочных органов.[ ...]

Появление специфических «репродуктивных» белков и белков эвокации свидетельствует в пользу представления о том, что под влиянием гормонов цветения происходит экспрессия новых генов, обусловливающих образование цветочных органов.[ ...]

Так недостаток бора сказывается на развитии репродуктивных органов. При этом наблюдается пустоцвет, опадание завязей, резкое снижение урожая семян. Наличие в почвах повышенного содержания меди и некоторых др. микроэлементов вызывает угнетение процесса синтеза белков в растениях.[ ...]

Повышение интенсивности обновления запасных белков в растениях во время колошения, возможно, находится в связи с процессами интенсивного оттока белковых веществ из вегетативных частей растений в репродуктивные органы, когда происходит усиленное образование запасных белков для формирования колоса. Интенсивность же обновления конституционных белков в стареющих органах растений падает. Особенно резко это проявилось в опыте с тимофеевкой, где конституционные белки даже за 120 часов обновились только на 66,7%, в то время как в молодых растениях овса и ржи конституционные белки полностью обновлялись в течение 72 часов. Интенсивность обновления хлорофилла при старении растений также падает. Если в молодых растениях овса и ржи (1) азот хлорофилла в течение 48 часов обновлялся примерно на 60%, то в стадии колошения овса за тот же период обновилось только 25% азота хлорофилла.[ ...]

АН СССР. 1981.[ ...]

Если в ранних фазах роста и развития растений овса конституционные белки обновляются значительно быстрее и интенсивнее запасных белков (см. табл. 3), то в фазе колошения конституционные и запасные белки обновляются примерно с одинаковой интенсивностью. В колосьях же запасные белки обновляются значительно быстрее конституционных. Резкое повышение интенсивности обновления запасных белков в колосьях в фазе колошения, невидимому, находится в связи с интенсивным оттоком белковых веществ из листьев и стеблей в репродуктивные органы. Наконец, в этой фазе развития растений значительно понижается интенсивность обновления азотистого состава хлорофилла. Если в молодых растениях овса при нормальных условиях калийного питания азот хлорофилла обновляется в течение 48 часов примерно на 60%, то в фазе колошения — лишь на 25 %.[ ...]

Результаты подобного сравнительного анализа аитигенпых спектров вегетативных, эвокированных и репродуктивных апексов периллы красной оказались несколько иными. Как и в случае рудбекии, в апексах вегетирующих и репродуктивных растений периллы красной были выявлены как общие, так и специфические белки (см. рис. 196, г, е). Но в отличие от рудбекии в апексах периллы па всех фазах репродуктивного развития выявляется один и тот же белок (см. рис. 196, с). Таким образом, в апексах периллы красной нам удалось выявить одни «репродуктивный» белок, появляющийся в них очень рано в фазу эвокации и характеризующий переход от вегетативного состояния в репродуктивное.[ ...]

Надпочечники секретируют ряд гормонов, среди которых наиболее важными являются кортизол, альдостерон и эпинефрин (адреналин). Кортизол регулирует метаболизм белков, жиров и углеводов, влияет на беременность, альдостерон — метаболизм натрия и калия, а эпинефрин стимулирует распад гликогена печени и повышает кровяное давление. Гормоны, получившие название эстрогенов, синтезируются в яичниках и тестисах из холестерола в ответ на сигналы, поступающие из мозга и других органов. Попадая в кровь, они разносятся затем к молочным железам и репродуктивным органам. Поскольку эстрогены растворимы в липидах, обычно содержащихся в мембранах, то они легко преодолевают мембранные барьеры и входят в ядро, где связываются с присутствующим в ядерном содержимом белком-рецептором. В дальнейшем комплекс эстроген + белковый рецептор связывается с регуляторными районами ряда генов и изменяют их экспрессию путем активирования или ингибирования действия генов. Комплекс эстроген + рецептор регулирует также экспрессию гена, кодирующего синтез белка-рецептора для прогестерона.[ ...]

Проведенный иммуиохнмпческии анализ антигенных спектров стеблевых апексов с помощью полученных к ним аптисывороток позволил выявить различия между некоторыми белками вегетативных, эвокированных и репродуктивных апексов (рис. 196).[ ...]

Современная классификация цветковых растений основана на синтезе данных самых различных дисциплин, в первую очеродь данных сравнительной морфологии, в том числе морфологии и анатомии репродуктивных и вегетативных органов, эмбриологии, палинологии, органеллографии и цитологии. Наряду с использованием классических методов морфологии растении с каждым днем все шире применяется электронный микроскоп, как сканирующий, так и трансмиссионный, что позволяет взглянуть па ультраструктуру многих тканей и клеток, включая пыльцевые зерна. В результате возможности сравнительно-морфологических исследований бесконечно расширились, что, в свою очередь, обогатило систематику цепным фактическим материалом для построения эволюционной классификации. В частности, большое значение начинает приобретать сравнительное изучение клеточных органелл, например изучение ультраструктуры нластид в протопласте ситовидных элементов (работы X. Д. Бэнке). Возрастающее значение приобретают также методы современной биохимии, особенно химии белков и нуклеиновых кислот. Иачииают широко применяться серологические методы. Наконец, расширяется также применение математических методов и особенно компьютерной техники.[ ...]

Целенаправленная селекционно-племенная работа с карпом в Эстонской ССР начата в 1975 г. на опытной станции по рыбоводству ЭстНИИЖВ. Целью селекции является повышение скорости роста, выживаемости и зимостойкости местного беспородного карпа, а также улучшение его экстерьерных и репродуктивных показателей. Немецкий карп отличается хорошими экстерьерными показателями и вкусовыми качествами, ропшинский карп — повышенной зимостойкостью. Проводится сравнительная оценка исходных форм и помесей I и II поколений по ряду рыбохозяйственных показателей. При постановке опытов применено маркирование рыб с помощью генетических маркеров (генотипы чешуйного покрова, Tf и Est). Изучается генетическая структура ремонтно-маточного стада по полиморфным белкам и ферментам (Tf, Est, Mdh, Pgi). Проведенные исследования н их результаты, а именно: обеднение генофонда исходных форм в результате случайного генетического дрейфа, хороший рост ряда помесей на первом году жизни, хороший экстерьер немецкого карпа и его помесей и повышенная зимостойкость ропшинского карпа — позволили сделать заключение о целесообразности проведения в начале работы трехп ородного синтетического скрещивания исходных форм. Схема скрещиваний и методы дальнейшей селекции будут уточнены после завершения опытов по сравнительной оценке исходных форм.[ ...]

В фазу индукции задерживающее действие, вызванное отдельными антагонистами гиббереллинов и антезинов, дает суммарный эффект по отношению ко всему гормональному комплексу флоригепа. В фазу эвокации воздействие тормозящих веществ проявляется через влияние их на синтез ДНК, РНК и белков и приводит к переключению синтеза репродуктивных белков на синтез белков, вызывающих формирование листовых зачатков.[ ...]

Оригинальную концепцию о роли аскорбиновой кислоты и ее превращений в цветении растений разработал Чиной [Chinoy, 1969]. Сопоставив влияние различных внешних условий и экспериментальных воздействий па цветение и метаболизм большого набора культурных злаков и других растений, Чиной пришел к выводу, что содержание и превращения аскорбиновой кислоты играют первостепенную роль в регуляции метаболизма при переходе от вегетативного роста к репродуктивному развитию. При этом особая роль отводится способности аскорбиновой кислоты к образованию активных комплексов с белками п нук-леопротеидами, к формированию свободнорадикальпьтх соединений. Придается большое значение влиянию этих соединений на метаболизм, клеточные мембраны и общее физиологическое состояние клеток стеблевых меристем при переходе растений к цветению.[ ...]

Афлатоксины являются высокотоксичными вторичными метаболитами микроскопических грибов Aspergillus flavus Link ex Fries, которые образуются на различных пищевых продуктах, пищевом сырье и кормах практически повсеместно, наиболее часто и в наибольших количествах в арахисе, кукурузе, семенах хлопчатника. Афлатоксины являются одним из наиболее сильных гепатотропных ядов, обладающих также выраженной способностью вызывать отдаленные последствия, в том числе канцерогенный эффект. Токсические свойства афлатоксинов усиливаются при питании с недостаточным количеством белка, полиненасыщенных жирных кислот, витамина А и этилового спирта.[ ...]

Развитие организма млекопитающих, начинается не сразу после оплодотворения женской половой клетки мужскими и образования зиготы, а после некоторого покоя. Последний у большинства животных длится несколько часов, а у отдельных (например, у соболя) даже несколько месяцев. При развитии организма, начинающемся с дробления зиготы, увеличивается количество клеток и происходит весьма сложный процесс качественных превращений, связанных с дифференциацией элементов зародыша, закладкой и последующим формированием всех тканей и органов, специализированных для выполнения определенных функций. Биохимически дифференциация и специализация в онтогенезе животных сопровождается обогащением клеток и тканей узкоспециализированными белками, бедными нуклеопротеидами или совсем их не содержащими. Сюда относятся белки опорно-механические (коллаген, эластин и ретикулин рыхлой и хрящевой соединительной ткани, кератин волос, рогов, шерсти, копыт и т. д.), сократительные (актин, липозин и тропомизии мышц), хромопротеиды (гемоглобин, миоглобин и др.), белки ферментативные и др. Перегрузка организма функциональными (узкоспециализированными) белками и обеднение репродуктивными белками (нуклеопротеидами) с возрастом усиливается. Лишь в нервной ткани она не заходит так глубоко: в этой ткани содержатся нуклеиновые кислоты, чем и поддерживается ее долговечность. Взаимо-отрицательная связь между функциональными и репродуктивными белками проявляется, например, в созревании эритроцитов .[ ...]

Таким образом, флориген является конечным звеном в цепи реакций индукции и начальным звеном в цепи реакций эвокации цветения. Если процессы, лежащие в основе индукции цветения, связаны с биосинтезом, распределением и функциональной деятельностью фитогормонов, то процессы, лежащие в основе эвокации, связаны с первичными изменениями в клетках апикальной меристемы, изменениями нуклеинового и белкового обменов, синтезом специфических информационных нуклеиновых кислот и синтезом качественно новых, так называемых репродуктивных белков (рис. 263).[ ...]

ru-ecology.info

КОНСТИТУЦИОННЫЕ БЕЛКИ - это... Что такое КОНСТИТУЦИОННЫЕ БЕЛКИ?

 КОНСТИТУЦИОННЫЕ БЕЛКИ — молекулы белка, входящие в состав структурных компонентов клетки и обеспечивающие ее жизнедеятельность.

Словарь ботанических терминов. — Киев: Наукова Думка. Под общей редакцией д.б.н. И.А. Дудки. 1984.

  • КОНСТИТУЦИОННАЯ СТРУКТУРА
  • КОНСТИТУЦИОННЫЕ ВЕЩЕСТВА

Смотреть что такое "КОНСТИТУЦИОННЫЕ БЕЛКИ" в других словарях:

  • АНГЛИЯ И УЭЛЬС — две исторических территории, занимающие южную часть о.Великобритания. Вместе с Шотландией и Северной Ирландией они входят в состав Соединенного Королевства Великобритании и Северной Ирландии. Хотя в политическом отношении Англия и Уэльс… …   Энциклопедия Кольера

  • Гватемала — 1) Республика Гватемала, гос во в Центр. Америке. Названа по городу Гватемала. Название образовано из ацтек. Guauhtemallan место, покрытое лесом . 2) столица Республики Гватемала. Город основан в 1524 г. под названием Сантьяго ( Святой Яго ).… …   Географическая энциклопедия

  • Англия и Уэльс — две исторических территории, занимающие южную часть о.Великобритания. Вместе с Шотландией и Северной Ирландией они входят в состав Соединенного Королевства Великобритании и Северной Ирландии. Хотя в политическом отношении Англия и Уэльс… …   Географическая энциклопедия

  • Северо-Американские Соединенные Штаты — I (United States of America, Etats Unis, Vereinigte Staaten von Nord America) федеральная республика в Северной Америке, между 24° 30 и 49° сев. шир., и 66° 50 и 124° 31 зап. долг. (по Гринвичу), тянется от Атлантического до Тихого океана и… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • РУМЫНИЯ — до 1990 официально называвшаяся Социалистическая Республика Румыния, независимое государство в юго восточной Европе. Население, которое считает, что происходит от романизированного фракийского народа даков, сохранило язык романской группы… …   Энциклопедия Кольера

  • Франция — (France), Французская Республика (République Française), государство в Западной Европе, на западе и севере омывается водами Атлантического океана и пролива Ла Манш, на юге  Средиземным морем. 551 тыс. км2. Население 58,4 млн. человек (1996),… …   Энциклопедический словарь

  • Швеция — Королевство Швеция швед. Konungariket Sverige …   Википедия

  • Бельгия — Королевство Бельгия нидерл. Koninkrijk België фр. Royaume de Belgique нем. Königreich Belgien …   Википедия

  • Испания — Королевство Испания исп. и галис. Reino de España кат. Regne d Espanya баск. Espainiako Erresuma окс. Reialme d Espanha …   Википедия

  • Франция — (France) Французская Республика, физико географическая характеристика Франции, история Французской республики Символика Франции, государственно политическое устройство Франции, вооружённые силы и полиция Франции, деятельность Франции в НАТО,… …   Энциклопедия инвестора

botanical_dictionary.academic.ru